商的近似数教案7篇

时间:2024-05-23 18:42:34 分类:工作计划

教案应当提供充足的练习机会,帮助学生巩固和应用所学知识,编写教案要根据学生的学习进度和反馈情况,及时调整教学策略和方法,下面是小文学范文网小编为您分享的商的近似数教案7篇,感谢您的参阅。

商的近似数教案7篇

商的近似数教案篇1

教学内容:求一个小数的近似数--教材第105-106页例1,做一做题目及练习二十四1-3题。

教学目的:使学生初步学会根据要求用四舍五入法保留一定的小数位数,求出小数的近似数。培养学生综合运用知识的能力。

教学重、难点:求一个小数的近似数及把较大数改写成以万或亿作单位的小数是教学重点。把较大数改写成以万或亿作单位的小数,容易丢掉计数单位或单位名称,求近似数与改写求准确数容易混淆,这是学习的难点。

教学过程:

一、复习

先省略万后面的尾数,求出近似数,再省略千后面的尾数,求出近似数。

1295356089020114536697010

二、新课

教师:我们已经学过求一个整数的近似数(或近似值)。在实际使用小数的时候,有时也没有必要说出它的准确数,只要说出它的近似数就够了,例如,量得大新的身高是1.625米,平常不需要说得那么精确,只说大约1.6米或1.63米。

我们已经会求一个整数的近似数,求一个小数的近似数的方法,同求整数的近似数的方法相似,是根据需要用四舍五入法保留一定的小数位数。

教师用投影片(或小黑板)出示例1的第1小题:2.953保留两位小数,它的近似数是多少?

教师:2.953保留两位小数,就是要省略哪一位后面的尾数?(省略百分位后面的尾数。)

省略百分位后面的尾数,要看哪一位上的数?(要看千分位上的数。)

接下来用四舍五入法怎样做?(因为千分位上的数3不满5,把它舍去。)

教师板书:2.9532.95

教师:谁能连贯地把做这题的过程说一说。

指名让学生说一说,然后教师总结:

做这题时要想:要保留两位小数,就要省略百分位后面的尾数。千分位上不满5,直接舍去。

教师用投影片(或小黑板)出示例1的第2小题:2.953保留一位小数,它的近似数是多少?

教师:2.953保留一位小数,就是要省略哪一位后面的尾数?(省略十分位后面的尾数。)

省略十分位后面的尾数,要看哪一位上的数?(要看百分位上的数。)

用四舍五入法怎样做呢?(因为百分位上的数满5,省略百分位和千分位上的数后,要向十分位进1。)

2.9加上进上来的1就是3.0。所以2.9533.0。

教师板书:2.9533.0

教师强调:这题的'要求是保留一位小数,所以小数末尾的0不能去掉。

教师:谁能连贯地把做这题的过程说一说。

指名让学生说一说,然后教师总结:

做这题时要想:要保留一位小数,就是省略十分位后面的尾数。百分位上满5,省略尾数后,向十分位进1,末尾的0不能去掉。

教师用投影片出示例1的第3小题:2.953保留整数,它的近似数是多少?

教师板书:2.953

教师:谁能做出这题并且说一说应该怎样做?

指名让学生做这题,并且说一说是怎样做的。

根据学生的发言,教师板书:2.9533,并且总结:做这题时要想;要保留整数,就要省略整数后面的尾数。十分位上满5,省略尾数后向个位进1,所以2.9533。

教师:观察上面三道题,是同一个小数保留两位小数,保留一位小数和保留整数。每一次求出的近似数的精确度是不同的。保留整数,表示精确到个位;那么保留一位小数,表示精确到什么位?(十分位。)保留两位小数呢?(表示精确到百分位。)

指名学生回答上述问题。条件较好的班,教师可以接着讲一讲关于精确度的问题。讲法可以如下:

教师:那么,上面的三个近似数哪一个更精确一些呢?我们现在证明一下。如果2.953表示的是测量一段绳子的长度得到的结果:2.953米。

教师用投影片(或小黑板)出示图如下:

教师:2.953保留两位小数时,是2.95米,表示精确到百分位。保留一位小数是3.0米,表示精确到十分位,也就是说绳子的准确长度不小于2.95米,也不能等于或大于3.05米。因为如果是2.94米,保留一位小数就是2.9米了;如果是3.05米或3.06米,保留一位小数就是3.1米了。再看当保留整数位3时,表示精确到整数个位,也就是说准确长度不能小于2.5米,不能等于或大于3.5米。所以前一个近似数都比后一个近似数精确程度要高一些,即2.95米的精确度高于3.0米的精确度,3.0米的精确度又高于3米的精确度。

教师用投影片或小黑板出示第106页上半页做一做中的第1题,并且加一题:4.795(保留两位小数)。指名让学生做,集体订正。

教师:我们学会了怎样求一个小数的近似数。想一想,求一个小数的近似数应该注意什么?同桌讨论一下。

指名让学生发言,在学生发言的基础上教师总结:

1.要根据题目的要求取近似值,即:保留整数,就看十分位是几,要保留一位小数,就看百分位是几,......然后按四舍五入法决定是舍还是入。

2.取近似值时,在保留的小数位里,小数末一位或几位是0的,应当保留,不能去掉。

三、课堂练习

1.做第106页上半页做一做的第1、2题,学生独立做,做完以后,集体订正。

2.做练习二十四的第3题。

教师先提问:精确到十分位是什么意思?(保留一位小数。)

精确到百分位是什么意思?(保留二位小数。)

然后,让学生独立做,教师巡视,个别辅导,强调要注意的两点。做完后,集体订正。

四、课堂作业

练习二十四的第1-2题。

商的近似数教案篇2

【教学目标】

1、使学生会用“四舍五入”法保留一定的小数位数,求出小数的近似数,将不是整万或整亿的数改写成用“万”或“亿”单位的数。

2、通过学生自主探索、合作交流,培养学生的探索能力。

【教学重点】

使学生掌握求一个小数的近似数的方法。

【教学难点】

使学生准确、熟练地应用“四舍五入”法求一个小数的近似数。

【教具】

多媒体课件

【教学过程】:

一、课前预习

1、怎样用“四舍五入”法求出一位小数的近似数?

2、怎样将不是整万或整亿的数改写成用“万”或“亿”作单位的数?

二、展示交流

(一)创设情境,引入新知

课件出示豆豆,看看小豆豆的身高是多少呢?

今天下午我们就来研究求一个小数的近似数。

(二)求小数的近似数的方法

1、同学们还刻求整数的近似数的'方法吗?我们可不可以用“四舍五入”法来求小数的近似数呢?

2、探究新知

(1)同桌讨论回忆什么是“四舍五入”法?

(2)讨论尝试

①那么求一个小数的近似数,我们也可以根据需要用“四舍五入”法省略十分位、百分位、千分位后面的数。

②出示例1,讨论求0。984的近似数

③保留一位小数时,末尾的“0”为什么应该写呢?

(3)总结归纳。求一个数的近似数,保留不同的位数,求得的近似数不同。保留小数位数越多,这个近似数就越接近准确数,也就是更精确。

(三)将不是整万或整亿数改写成用“万”或“亿”作单位的数

1、出示教材第74页例2

①讨论:通过课件图片中的数学信息,我们怎样表示这些数的读写会比较方便呢?

②结论:改写成用“亿”或“万”作单位的数。

2、从算理入手,理解改写方法。

①讨论:怎样改写呢?

②结论:改写时在万位后面点上小数点,写上“万”字,并去掉小数末尾的0就可以了。改写成以“亿”作单位同上。

三、检测反馈

1、教材第74页上、下的“做一做”。

2、教材第75页练习十二第一、2题。第3、4题

四、板书设计教

求一个数的近似数

四舍五入

保留两位小数0.984≈0.98 142800千米=14.28万千米

保留一位小数0.984≈1.0 778330000千米=7.7833亿千米

≈7.8亿千米

保留整数0.984≈1

注意:在表示近似数时,小数末尾的0不能去掉

教学反思:

现代课堂理念提倡师生互动、生生互动、学生思维的灵动、学生智慧的碰撞,而在自己的课堂中就缺失了这些,那么导致课堂氛围是平淡无味的,学生心底潜在的积极热情没有调动起来,虽然学生也在发言、讨论、交流,但是每个孩子的情感体验不是真正愉悦的。造成这样课堂效果的原因还是因为自己对于整个课堂的把控不够巧妙,刻意的在完成自己设计好的教学,没有和孩子们融合。

商的近似数教案篇3

教学内容:p23例7、做一做,p26练习四第10、11题。

教学目的:

1、使学生学会用“四舍五入”法取商的近似数。

2、培养学生的实践能力和思维的灵活性,培养学生解决实际问题的能力。

3、引导学生根据生活中的实际情况多角度思考问题,灵活地取商的近似数。

教学重点:知道为什么要求商的近似数,会用“四舍五入”法取商的近似数。

教学难点:能根据生活中的实际情况多角度思考问题,灵活地取商的近似数。

教学过程:

一、复习

1.按“四舍五入法”,将下列各数保留一位小数.

6。03 7。98

2.按“四舍五入”法,将下列各数保留两位小数.

8。785 7。602 4。003 5。897 3。996

做完第1、2题后,要让学生说明其中小数末尾的“0”为什么不能去掉.

3。 计算0。38*1。14(得数保留两位小数)

二、新课

1.教学例7:

教师出示例6,口述图意, 再列式计算.当学生除到商为两位小数时,还除不尽.教师问:“实际计算钱数时,通常只算到‘分’,应该保留几位小数?除的时候要除到哪一位?为什么?(应 该保留两位小数,只要算出三位小数,然后按“四舍五入法”省略百分位后面的尾数。)横式应该怎样写出?教师板书。

教师问:表示计算到“角”需要保留几位小数?除的时候要除到哪一位?应该约等于多少?

教师要让学生想一想:“怎样求商的近似值?”(首先要看题目的要求,应该保留几位小数;其次,求商时,要比需要保留的小数位数多除出一位,然后再“四舍五入”.)

我们学习班了求积的近似值和求商的近似值,比一比这两者有什么相同点和不同点?

2.p23做一做:

教师让学生按要求进行计算,巡视时,注意学生计算时取商的近似值的做法对不对.做完后,让学生说一说按照不同的要求,取不同的商的近似值是怎样求出来的?(计算出商的小数的位数要比要求保留的小数位数多一位,再按“四舍五入法”省略尾数.)

师:解题时用了什么技巧?

三、巩固练习

1、求下面各题商的近似数:

3.81÷7 32÷42 246。4÷13

2、p26第10题第(1)题。

四、作业:p26第10题第(2)题、第11题。

课后小记:

本以为求近似数是教学难点, 所以在新授前安排了大量相关知识的复习。但在实际教学中才发现计算才是真正的教学难点, 由于例题及做一做中所有习题全是小数除以整数, 所以当作业中出现小数除以小数计算时, 许多学生装都忘记了"一看, 二移"的.步骤。 所以在设计巩固练习时应增加小数除以小数的练习。

其次我根据学情补充介绍了一种求商近似数的简便方法。 即除到要保留的小数位数后不再继续除,只把余数同除数做比较,若余数比除数的一半小,就说明求出下一位商要直接舍去;若余数等于或大于除数的一半,就说明 要在已除得的商的末一位上加1。介绍了这种方法感觉好的同学算得更快了,但悟性较差的学生听完后连最基本的保留两位小数应除到小数点后面第几位也混淆不清 了。所以下次再教时,此方法的介绍时间可以适当后移,放在练习课上。

商的近似数教案篇4

教学内容:

p23例7、做一做。

教学目的:

1、使学生学会用“四舍五入”法取商的近似数。

2、培养学生的实践能力和思维的灵活性,培养学生解决实际问题的能力。

3、引导学生根据生活中的实际情况多角度思考问题,灵活地取商的近似数。

重点:

使学生知道为什么要求商的近似数,会用“四舍五入”法取商的近似数。

难点:

使学生能根据生活中的实际情况多角度思考问题,灵活地取商的近似数。

教学过程:

一、复习

1.按“四舍五入法”,将下列各数保留一位小数.

6.037.98

2.按“四舍五入”法,将下列各数保留两位小数.

8.7857.6024.0035.8973.996

做完第1、2题后,要让学生说明其中小数末尾的“0”为什么不能去掉.

3.计算0.38×1.14(得数保留两位小数)

二、新课

1.教学例7:

教师出示例7,口述图意,再列式计算。当学生除到商为两位小数时,还除不尽。教师问:“实际计算钱数时,通常只算到‘分’,应该保留几位小数?除的时候要除到哪一位?为什么?(应该保留两位小数,只要算出三位小数,然后按“四舍五入法”省略百分位后面的尾数。)横式应该怎样写出?教师板书.

教师问:表示计算到“角”需要保留几位小数?除的时候要除到哪一位?应该约等于多少?

教师要让学生想一想:“怎样求商的近似值?”(首先要看题目的要求,应该保留几位小数;其次,求商时,要比需要保留的小数位数多除出一位,然后再“四舍五入”。)

我们学习班了求积的近似值和求商的近似值,比一比这两者有什么相同点和不同点?

2.p23做一做:

教师让学生按要求进行计算,巡视时,注意学生计算时取商的`近似值的做法对不对.做完后,让学生说一说按照不同的要求,取不同的商的近似值是怎样求出来的?(计算出商的小数的位数要比要求保留的小数位数多一位,再按“四舍五入法”省略尾数.)

师:解题时用了什么技巧?

三、巩固练习

1、求下面各题商的近似数:

3.81÷732÷42246.4÷13

2、p26第10题第(1)题。

四、作业:

p26第10题第(2)题、第11题。

五、总结:

今天大家有什么收获?

板书设计:商的近似数

3.81÷7≈0.5432÷42≈0.76246.4÷13≈18.95

0.5440.76118.953

商的近似数教案篇5

教学目的:

●使学生能够根据要求会用:“四舍五入”法保留一定的小数位数,求出一个小数的近似数。

●培养学生的类推能力,增进学生对数学的理解和应用数学的信心。

教学重点:能正确的求一个小数的近似数。

教学难点:怎样准确的求一个小数的近似数。

教学过程:

一、导入新课

师:我们已经认识了小数,生活中有许多小数的信息,你收集到了吗?

生:汇报,教师按准确数和近似数把学生提供的信息中的小数分成两种写在黑板上。

师:谁注意到了老师为什么把同学提供的这些小数分成两种写在黑板上呢?(生通过观察回答)

师:在实际生活中有时不必说出小数的准确数,只要说出它的近似数就可以了,同学们看一看自己收集到的信息中有这样的情况吗?(生汇报和小数近似数有关的信息。)

师:听了同学们的汇报,你有什么感受呢?小数的近似数在生活中应用的这么广泛,怎么求一个小数的近似数呢?今天我们就来一起学习。师板书课题。

1、把下面各数省略万后面的尾数,求出它们的近似数(卡片出示)

986534 58741 31200

50047 398010 14870

2、下面的'□里可以填上哪些数字?

32□645≈32万 47□05≈47万

学生填完后,说一说是怎么想的。

[以上复习内容重点抓住了整数取近似值的方法让学生回忆练习,通过复习唤起学生印象,为求小数的近似值打下基础]

二、探究新知

我们学过求一个整数的近似数。在实际应用小数时,往往也没有必要说出它的准确数,只要它的近似数就可以了。如:如豆豆的身高0.984米,平常不需要说得那么精确,那么如何求一个小数的近似数呢?今天我们就来学习这一内容。

师:豆豆的身高0.984米,我们一般怎么表述豆豆的身高?

你是怎样得出豆豆身高的进似数的?

师:你们能利用已有的知识来求出这个小数在不同情况下的近似数吗?

生:自己练习在练习本上做一做,然后在小组内进行交流,看一看有没有争议的地方。并引导学生按顺序进行汇报。

生:

(1)学生汇报保留两位小数求近似数的思维过程,并再找一名同学进行汇报,加深对方法的理解。

(2)保留一位小数,有争议吗?找同学汇报自己的想法。学生讨论近似数是1.0还是1。教师出示线段图,看一看给学生带来什么启示。

引导学生小组讨论交流:使学生明确保留一位小数是1.0,原来的长度在0.95与1.04之间。保留整数为1,原来的准确长度在1.4与1.0之间,所以1.0比1精确的程度高一些。也就是小数保留的位数越多,精确的程度越高。

师:总结出尽管两个数的大小相等,但表示的精确程度不同,同学们认为哪个答案是正确的呢?求近似数时,小数末尾的零不能去掉。

(3)保留整数部分应怎样思考,注意什么问题呢?

师:请同学们回忆求0.984近似数的过程,你能发现求一个小数的近似数有什么共同的特点吗?同学们利用我们以前学过的知识也就是求整数近似数的方法,四舍五入的方法来求小数的近似数,希望同学在今后的学习中也能运用我们学过的知识来解决新的问题。下面我们就用这种方法来求课前同学们提供的这些小数的近似数。(保留到十分位)

(4)小结:

问:求一个小数的近似数应注意什么?

引导学生讨论知道:求一个小数的近似数要注意两点:

①要根据题目的要求取近似值,如果保留整数,就看十分位是几;要保留一位小数,就看百分位是几;……然后按“四舍五入法”决定是舍还是入。

②取近似值时,在保留的小数位里,小数末一位或几位是0的.0应当保留,不能丢掉。

三、练习

(1)师:最后一个信息谁提供的,你能把这个信息用小数近似数的形式)表示出来吗?学生自己修改自己手中的信息,汇报后,再同桌之间交流。

(2)师:老师也收集到了一些小数的信息,这些信息能用小数近似数的形式表述吗?能请你表示出来,不能,请说明理由)

(3)师:同学们还记得自己的身高大约是多少吗?想知道老师的身高吗?教师提示:身高大约是1.6米,老师的实际身高是两位小数,猜一猜老师的实际身高是多少米?老师的身高是用四舍法得到的,再来猜一猜。

(4)出示食物的价格,判断小明带12元钱够吗?学生自由发言,说明自己的理由。

(5)出示租车说明,判断租多少辆车去出游?

师:看来我们不仅要掌握求近似数的方法,还要灵活的运用所学的知识才能解决生活中的实际问题。

四、全课小结:教师明确小数的近似数的方法与整数的近似数相似。要用“四舍五入”法保留小数位数。要注意保留小数位数越多,精确程度越高。

商的近似数教案篇6

一、教学目标:

1.通过组织学生探讨,培养学生在解决实际问题时要根据实际情况取商的近似值的应用意识。

2.使学生能联系生活实际体会取商的近似值的不同情况,并能根据实际需要选择“进一法”和“去尾法”解决生活中的问题。

3.培养学生联系生活实际灵活解决问题的能力,体会数学与生活的密切联系。

二、教学重、难点:

感受商的近似值的现实意义,结合生活实际正确地选择“进一法”、“去尾法”解决问题。

三、教学过程:

(一)谈话导入,揭示课题

同学们,昨天老师去逛超市。花10元钱买了3斤苹果。谁能告诉老师苹果的单价是多少呢?

板书:学生的列式计算。引导学生说出用“四舍五入”的`方法取得近似值。

设计意图:除了让学生在体会学习数学是一件快乐的事情,更要让学生深刻地体会到数学知识来源于生活的实际,又服务于生活实际,体验学习探索成功给学生带来的愉快。

(二)创设情境,探究新知

1.出示例12(1):小强的妈妈要将2.5千克香油分装在一些玻璃瓶里,(每个最多可盛0.4千克)需要准备几个瓶?

①学生独立思考,列式解答。

预设:生1:2.5÷0.4=6.25(个)

生2:2.5÷0.4=6.25(个)≈6(个)

生3:2.5÷0.4=6.25(个)≈7(个)

②组织学生以小组为单位进行讨论,说出自己的看法及理由。(小组汇报)

预设:

生1:瓶子需要整个数,不能用小数表示。把6.25个用“四舍五入法”约等于6个。

生2:6个只能装0.4×6=2.4(千克),不够装应需要7个。

③教师概括。

师:两种答案哪一个更符合生活实际?(第二种)

师:像这样,在实际生活中,将6.25中的小数点后面的尾数舍去,向个位进1,这种求近似值的方法叫做进一法。

2.再来看看王阿姨遇到的问题,如何解决?出示例12(2):王阿姨用一根25米长的红丝带包装礼盒。每个礼盒要用1.5米长的丝带,这些红丝带可以包装几个礼盒?

①先独立思考。

预设:生1:25÷1.5=16.666……(个)

生2:25÷1.5=16.666……(个)≈17(个)

生3:25÷1.5=16.666……(个)≈16(个)

②全班交流答案,组织学生讨论,强调以理服人。

预设:生1:盒数应取整数,把16.666……(个)用“四舍五入”法应进1,约等于17个。

生2:但实际包装时,17个礼盒要用1.5×17=25.5(米)的红丝带,丝带不够包装,应是16个。

生3:16个礼盒用了1.5×16=24(米)红丝带,剩下1米不能再包装一个礼盒,所以只能16个。

③教师概括。

师:我们应取哪种呢?

师:像这样根据实际情况,将16.666……中小数点后面的尾数去掉,这种求近似值的方法叫做“去尾法”。

(三)教师小结:看来,“四舍五入”法取近似值只适用于一般情况,在解决问题时,要根据实际情况取商的近似值,有时要多一点,即“进一法”;有时要少一点。即“去尾法”。这是我们今天所学的商的近似值实际应用。(板书)

(四)巩固练习,拓展提高

第一关:试一试

第二关:比一比

第三关:选一选

第四关:说一说:

五、课堂总结:

同学们,通过今天这节课的学习,你对商的近似数又有哪些新的认识?

(一般情况下采用“四舍五入”法取商的近似数。但在解决实际问题时,要根据实际情况,用“进一法”和“去尾法”取商的近似数。)

六、板书设计:

商的近似数

10÷3= 3.333···(元)≈3.33(元)四舍五入法

2.5÷0.4 = 6.25(个)≈7(个)进一法

25÷1.5=16.66……(个)≈16(个)去尾法

商的近似数教案篇7

课题四:

商的近似数

教学内容:

教科书第23页的例7和“做一做”中的题目。

教学目的:

1、使学生学会根据实际需要用“四舍五入”来求小数的近似数.

2、提高学生的比较、分析、判断的能力。

教学过程:

一、复习

1.按“四舍五入法”,将下列各数保留一位小数.

3.724.185.256.037.98

2.按“四舍五入”法,将下列各数保留两位小数.

1.4835.3478.7852.864

7.6024.0035.8973.996

做完第1、2题后,要让学生说明其中小数末尾的“0”为什么不能去掉.

二、新课

1.教学例6.

教师出示例6,要求根据书上提出的信息列式计算.当学生除到商为两位小数时,还除不尽.教师问:“实际计算钱数时,通常只算到‘分’,应该保留几位小数?除的时候应该怎么办?(生:应该保留两位小数,只要算出三位小数,然后按“四舍五入法”省略百分位后面的尾数。)

教师问:保留一位小数,应该等于多少?表示计算到“角”。

教师要让学生想一想:“怎样求商的近似值?”(首先要看题目的要求,应该保留几位小数;其次,求商时,要比需要保留的小数位数多除出一位,然后再“四舍五入”.)

2.做第23页“做一做”中的题目.

教师让学生按要求进行计算,巡视时,注意学生计算时取商的近似值的`做法对不对.做完后,让学生说一说按照不同的要求,取不同的商的近似值是怎样求出来的?(计算出商的小数的位数要比要求保留的小数位数多一位,再按“四舍五入法”省略尾数.)

教师问:你解题时用了什么技巧?

三、巩固练习

1、求下面各数的近似数:

3.81÷732÷42246.4÷13

2、书上的作业。

《商的近似数教案7篇.doc》
将本文的Word文档下载,方便收藏和打印
推荐度:
点击下载文档

相关文章

最新文章

分类

关闭