数与代数一教案7篇
教案的细致准备可以让我们更好地把握教学重点,详细的教案能够为教学过程提供清晰的指导,下面是小文学范文网小编为您分享的数与代数一教案7篇,感谢您的参阅。
数与代数一教案篇1
教学内容:
苏教版六下p79“练习与实践”第6~9题。
教学目标:
学生能应用画图、列表、转化等策略分析和解决实际问题,能根据问题特点选择不同策略分析数量关系、列式解答,并能解释和说明自己所用的策略。
学生能依据相应的策略说明分析实际问题数量关系的思考过程,提高灵活、综合应用策略的能力,培养思维的深刻性和灵活性,发展分析、推理等思维和几何直观,以及分析问题、解决问题的能力。
学生进一步感受现实生活存在各类数学问题,体会解决问题策略的实际应用,培养学生面对实际问题用数学方法分析、处理的意识。
教学重点:
用画图、列表、转化等策略解决实际问题。
教学难点:
灵活选择策略解决实际问题。
教学过程:
一、揭示课题
谈话:上一节课我们复习了解决问题的相关内容,并且重点应用了从条件或问题想起的策略解决实际问题。今天继续复习解决问题,主要应用画图、列表的策略解决问题,并且能自己选择策略灵活地解决实际问题。
二、练习与实践
做“练习与实践”第6题。
(1)让学生读题,利用图形理解条件和问题。
交流:你知道了题里有哪些条件,要解决什么问题?(出示图形,根据交流注明长、宽的条件)这块长方形菜地分成的两个部分各是什么形状的?
引导:要计算这里三角形的面积和梯形的面积,你能根据题里的条件在图上画一画,找到解决问题的思路吗?想一想怎样画,自己画一画。交流:你是怎样画的?
为什么想到在三角形的顶点画宽的平行线段?
说明:通过交流,我们知道根据黄瓜的面积比番茄面积少180平方米这个条件,可以在梯形中画出一个和种黄瓜的三角形地完全一样的三角形地块,这样就能直接看出黄瓜比番茄少的面积是右边这个长方形地块。让画法不合理的订正自己的画法。
(2)引导:现在你能看图说一说,解决这个问题可以怎样想吗?在四人小组里互相讨论,找找可以怎样解答这个问题。
交流:哪些同学想到了解决这个问题的思路?和大家交流一下。
结合交流,帮助学生理解不同思路。
(3)让学生选择一种思路解答,指名不同解法的学生板演。
引导学生结合图形分别说说不同解法中每一步算的什么。
(4)提问:我们刚才画图对于解答问题有什么好处?
下面的问题用哪个策略解决比较合适?请你应用恰当的策略解答。
出示:一个长方形长8分米,宽6分米。如果把一条长缩短到原来的一半,或者把一条宽缩短到原来的一半,都能得到一个梯形。这两个梯形面积会相等吗?算一算、比一比。
提问:想想这个图形分别怎样变化的,能用什么策略解决,用你想到的策略算一算、比一比,解决问题。学生独立解答,教师巡视、指导。
交流:你用了什么策略?怎样画图的?这两个梯形面积相等吗?你是怎样计算的?
说明:用画图的策略能找到相应的.条件,计算各自的面积。这里虽然长方形通过不同的变化得到的梯形不同,但面积是相等的。
做“练习与实践”第7题。
提问:你能说说题里告诉我们什么,要解决什么问题?
引导:大家想一想杨大爷步行的过程,思考解决问题还需要什么条件;再列表或画图表示行走过程,看看从表里或图中能知道什么新条件。学生列表或画图,教师巡视、指导。
交流:你是怎样列表的?画图的是怎样画图表示的?
引导:大家先观察列出的表格或画出的图形,思考能得出哪个条件,可以怎样解决问题,各人独立解答。交流:你是怎样解答的?
你结合列表或画图,说说这里的每一步是怎样想的吗?列表或画图在解题过程中有什么作用?
做“练习与实践”第8题。
(1)让学生先根据题意补充线段图,再同桌交流怎样补充的,讨论怎样解答,有没有不同解答方法,然后选择一种方法解答。
学生画图、交流并解答,教师巡视,指名不同算法的学生板演。
(2)交流:线段图是怎样补充完整的?
你能联系线段图理解这里的不同解法,说说每种解法是怎样想的吗?自己观察、思考,不明白的可以合同学交流。提问:你能说说这些解法各是怎样想的吗?
指名交流,引导学生结合图形理解不同解法。
比较:哪种解法更方便一些?这里应用了哪个策略?
做“练习与实践”第9题。
学生读题,要求交流条件和问题。
提问:下面的线段图表示了哪些条件?还有什么条件没有表示出来?引导:根据从第一筐取出2放入第二筐,两筐苹果就同样重这个条件,表示第二筐苹果多重的线9
段怎样画呢?先看表示第一筐的线段想一想,再画一画。学生画图,教师巡视、指导。
交流:根据条件,表示第二筐苹果有多重的线段怎样画的?说说你的想法。
引导:请你看线段图,想想这两筐苹果的千克数之间有什么关系,能怎样解答,然后用你想到的方法解答出来。如果与困难,可以讨论讨论。学生解答,教师巡视、指导。
交流:你是怎样解答的?用了什么策略?
结合交流板书算式,并引导学生理解不同解法。反思:通过解答这道题,你有哪些体会?
三、总结交流提问
回顾今天解决问题的内容和过程,都应用了哪些策略?你对画图、列表、假设和转化这些策略的应用,有哪些新的认识?还有哪些收获?
数与代数一教案篇2
一、教学目标
1.了解用字母表示数的意义,了解用字母表示数是代数的一个特点,是数学的一大进步。
2.了解代数式的概念,能说出一个代数式所表示的数量关系。
3.通过用字母表示数,学生学会抽象概括的思维方法。
4.通过实例,学生从中领悟到数学来源于实践,又反过来作用于实践的辩证原理。
5.通过用字母表示数,反映出数学中从特殊到一般的辩证关系,从而使学生受到初步的辩证观点的教育。
二、教学重点
难点用字母表示数的思想
三.教学工具
小黑板三角尺
四.教学方法
探究法互动法
五、教学步骤
(一)创设情境,复习导入
1.设疑引入
师:中学数学课是从代数开始的,在代数课上都学习些什么呢?初中代数和小学数学有什么关系呢?请同学们看小黑板
师:图中有几种交通工具?
学生活动:观察图形,从中找出答案.(两种:飞机、火车)
?教法说明】图片展示联系实际易激发初一学生兴趣,使学生养成自己发现问题、解决问题的创造性思维习惯.
师:这列火车和飞机行驶的路程与时间如下表:
时间(时)
学生活动:先独立思考,再与同伴交流,互相讨论后一一回答问题.
教师活动:巡视查看,叫学生回答并正确评价,然后师生共同归纳:
(1)加法交换律;乘法交换律
(2)交换两个加(或因)数,它们的和(或积)不变
(3)a + b = b + a;ab = ba
?教法说明】由学生熟知的例子引出字母表示数学生易接受.由特殊到一般,也体现用字母表示数简明、普遍的优越性.注意①三个问题不要连续给出,要让学生个个击破,让学生有成功感,③向学生指明用字母表示数体现了数学中的简洁美,对称美,数学美.
(二)尝试反馈,巩固练习
师:你还学过哪些用字母表示数的运算律?能写出来吗?
学生活动:一个学生板演,其他学生写在练习本上(加法结合律、乘法结合律、分配律)
师:巡视检查,共同与学生评价板演.
?教法说明】通过亲自动手尝试,进一步理解用字母表示数的实际意义.
小结:(1)这些运算律中的字母可表示任何一个数;(2)用字母表示数能简明地揭示一般规律.
(三)变式训练,培养能力
师:除运算律能用字母表示外,还有许多同学们熟悉的实例,请看:(出示投影2)
1.如果用s表示路程(单位:km),t表示时间(单位:h),v表示速度阵位:km/h),那么有v=__________.
2.一个正方形的边长为a cm(厘米),这个正方形的周长是多少?面积是多少?用l表示周长(单位:cm),则l=_________,用s表示面积(单位:cm2),则s=_____________。
学生活动:在练习本上写出结果,两名学生板演,
教师活动:(1)常用的长度单位在小学大多用汉字表示,初中开始用字母表示:米(m),厘米(cm),毫米(mm),千米(km),相应的面积、体积单位则是平方米(m2),立方米(m3)等.(2)单位不能遗漏。(3)尽可能化成最简形式
?教法说明】通过练习使学生亲自体会用字母表示数的广泛性,为今后正确使用奠定基础.
(四)归纳小结
师:从以上各例可以看出,用字母表示数,可以把数或数量关系简明地表示出来,且具有一般性,因此,在公式与方程中都用字母表示数,这给运算带来了很大方便.今天的探索就到这里,刚才同学们表现都很出色,希望再接再励!
(五)课堂练习,巩固提高
1.一个三角形的底边为a m,这边上的高为h m,则这个三角形的面积是多少?用s表示面积(单位:m2),则s=_______;它和什么图形的面积公式相似?
2.用字母表示(一个或几个)
(1)有这样一个游戏:把你的出生年份乘以10000倍,再把你的出生月份乘以100倍,最后把你的出生日份乘以3,全部相加后,所得的和中就能够计算出你的出生日期。不信试一试;
(2)2 x 2 = 2 + 2;3 +—— = 3 x ——;4 x —— = 4 + ——;5 x—— =5 +——,......(3)3x3—1x1=8,5x5—3x3=16,9x9—7x7=32,15x15—13x13=56,......3.—— + —— =——,—— + —— =——,—— + —— = ——,—— + —— = ——,......
数与代数一教案篇3
一、学习目标
(1)在具体情境中进一步理解字母表示数的意义,通过判断,并理解代数式的意义。
(2) 初步掌握列代数式的方法,能根据要求正确列出相应的代数式。
(3)通过学习,培养学生正确规范的数学语言表达能力。
二、学习重点难点
代数式的意义以及正确地列出代数式。
三、学习过程
1.(1)我们知道用字母可以表示数,请你填空。
①七年级一班有男生20人,女生n人,那么共有学生_________人。
②买苹果s千克用了4元钱,买1千克苹果需要________元。
③长方形的长和宽分别是a厘米和b厘米,正方形的边长是c厘米,长方形与正方形面积的和是_______。
(2) 上述各问题中出现的如20+n、 、4n、(ab+c2)以及以前学习的n-m、2(a+b)、ab+ac等式子,都称为代数式。
(3)指出下列哪些是代数式:_______________________ (填序号)
(1) m+5 (2)2x-y+1 (3) 2+3+5 (4) 3t;xt; p="">
(5) (m-5n)2 (6) abc (7)a (8) 2+x=3
2.(1)例1 填空:
①甲数用a表示,乙数比甲数大3,那么乙数是______________.
②甲数用a表示,甲、乙两数的`和为10,那么乙数是______________.
③甲数用a表示,甲数是乙数的5倍,那么乙数是______________.
④甲数用a表示, 乙数比甲数的平方少2,那么乙数是______________.
⑤长方形的长和宽分别为a cm、b cm .则该长方形的周长为________cm
(1)自主归纳。 结合上面所有练习中出现的问题,能否总结出代数式的书写格式?
(2)下列代数式中符合书写要求的是________ ,并说明理由。
(1)x×y×2 (2) a + b 厘米 (3) 2(b-a) (4) (a + b) ÷c (4.像“x的3倍与y的2倍的和”、“x与5的差的3倍”等用文字表述数量关系的语言称为自然语言(或普通语言);
像3x+2y与3(x-5)等用代数式表述数量关系的语言称为数学语言。
5.将下列代数式用自然语言表示: (1) (a+b)2 (2) a2 -b2
6.请同学们将下面的代数式赋予它实际意义。a-b ___________4x_________________________
四、课时小结:
这节课我学会了: 存在问题的地方:
五、课堂检测
1.列代数式表示(注意规范书写)
① x的 与a 的和是____________;② a,b?数和的平方减去a、b两数的立方差____________;
③ 长方形的周长为20cm,它的宽为xcm,那么它的面积为____________;
④ 某商品的利润为a元,利润率为1
?3.2代数式》测试
3.(题型三)某汽车的油箱里储油20 l,如果该汽车每行驶1 km耗油0.04 l,那么当汽车行驶n(n≤500)km时,油箱中还剩汽油______l.
4.(题型二)已知x2+x-1=0 ,则3x2+3x-5=________.
?3.2第2课时代数式求值》同步练习
解题突破
⑤根据设计的程序进行计算,找到循环的规律,根据规律推导计算.
命题点 3利用整体法求值[热度:96%]
10.⑥已知-x+2y=5,则5(x-2y)2-3(x-2y)-60的值是()
a.80 b.10 c.210 d.40
解题突破
⑥先通过改变符号变换已知代数式,再利用整体代入法进行计算.
数与代数一教案篇4
教学
目标1.让学生领会代数式值的概念;
2.了解求代数式值的解题过程及格式
3.初步领悟代数式的值随字母的取值变化而变化的情况
教学
重点培养学生的探索精神和探索能力。教学
难点通过学习使学生了解求代数式的值在日常生活中的应用;
教学
方法启发式教学
教学
用具
教学过程集体备课稿个案补充
新课引入
2001年7月13日,莫斯科时间17:08国际奥委会主席萨马兰奇宣布北京获得2008年第29届夏季奥运会的主办权。此时此刻举国欢腾,激情飞扬(多媒体展示当时的欢庆场面)。多媒体展示钟表:北京时间莫斯科时间
提出问题:你能根据图示得出北京时间和莫斯科时间的时差为多少?
如果用表示莫斯科时间,那么同一时刻的北京时间是多少?
学生回答:+5
进一步提出:国际奥委会主席萨马兰奇宣布北京获得2008年第29届夏季奥运会的主办权的北京时间是多少?
学生回答:+5=17+5=22时,即北京时间为22:08。
一、新课过程
代数式的值:一般地,用数值代替代数式里的字母,计算后所得的结果叫做代数式的值;例如22是代数式+5在=17时的值。
做一做:右图表示同一时刻的东京时间与北京时间:东京时间北京时间
⑴、你能根据右图知道北京与东京的时差吗?
⑵、设东京时间为,怎样用关于东京时间的代数式表示同一时刻的北京时间。
⑶、2002年世界杯足球赛于6月30日在日本横滨举行,开幕式开始的东京时间为20:00问开幕式开始的北京时间是几时?
二、课内练习
1、当分别取下列值时,求代数式的值:⑴⑵
2、当时,求下列代数式的值:⑴⑵
3、当时,。
三、典例分析
例1当n分别取下列值时,求代数式n(n-1)/2的值:
(1)n=-1(2)n=4(3)n=0.6
解(1)当n=-1时,n(n-1)/2=(-1)x(-1-1)/2=1
(2)当n=4时,n(n-1)/2=4x(4-1)/2=6
(3)当n=0.6时,n(n-1)/2=0.6x(0.6-1)/2=-0.12
注意:负数代入求值时要括号,分数的乘方也要添上括号。
四、课堂练习1
1、当x分别取下列值时,求代数式20(1+x%)的值:
(1)x=40(2)x=25
2、当x=-2,y=3时,求下列代数式的值:
(1)3y-x(2)|3y+x|
3、当x分别取下列值时,求代数式4-3x的值:
(1)x=1(2)3(3)x=6
4、当a=3,b=3时,求下列代数式的值:
(1)2ab(2)a2+2ab+b2
五、典例分析
例2
小结、布置作业
数与代数一教案篇5
1.教学重点、难点
重点:列代数式。
难点:弄清楚语句中各数量的意义及相互关系。
2.本节知识结构:
本小节是在前面代数式概念引出之后,具体讲述如何把实际问题中的数量关系用代数式表示出来。课文先进一步说明代数式的概念,然后通过由易到难的三组例子介绍列代数式的方法。
3.重点、难点分析:
列代数式实质是实现从基本数量关系的语言表述到代数式的一种转化。列代数式首先要弄清语句中各种数量的意义及其相互关系,然后把各种数量用适当的字母来表示,最后再把数及字母用适当的运算符号连接起来,从而列出代数式。
如:用代数式表示:比 的2倍大2的数。
分析 本题属于“…比…多(大)…或…比…少(小)”的类型,首先要抓住这几个关键词。然后从中找出谁是大数,谁是小数,谁是差。比的2倍大2的数换个方式叙述为所求的数比的`2倍大2。大和比前边的量,即所求的数为大数,那么比和大之间量,即 的2倍则为小数,大后边的量2即为差。所以本小题是已知小数和差求大数。因为大数=小数+差,所以所求的数为:2 +2.
4.列代数式应注意的问题:
(1)要分清语言叙述中关键词语的意义,理清它们之间的数量关系。如要注意题中的“大”,“小”,“增加”,“减少”,“倍”,“倒数”,“几分之几”等词语与代数式中的加,减,乘,除的运算间的关系。
(2)弄清运算顺序和括号的使用。一般按“先读先写”的原则列代数式。
(3)数字与字母相乘时数字写在前面,乘号省略不写,字母与字母相乘时乘号省略不写。
(4)在代数式中出现除法时,用分数线表示。
5.教法建议:
列代数式是本章教学的一个难点,学生不容易掌握,这样老师在上课时,首先要让学生理解代数式的本质,弄清语句中各种数量的意义及其相互关系,然后设计一定数量的练习题,由易到难,螺旋式上升,使学生能够正确列出代数式。
数与代数一教案篇6
教学目标
1、使学生掌握代数式的值的概念,能用具体数值代替代数式中的字母,求出代数式的值;
2、培养学生准确地运算能力,并适当地渗透特殊与一般的辨证关系的思想。
教学重点和难点:
正确地求出代数式的值
课堂教学过程设计
一、从学生原有的认识结构提出问题
1、用代数式表示:(投影)
(1)a与b的和的平方;(2)a,b两数的平方和;
(3)a与b的和的50%?
2、用语言叙述代数式2n+10的意义?
3、对于第2题中的代数式2n+10,可否编成一道实际问题呢?(在学生回答的基础上,教师打投影)
某学校为了开展体育活动,要添置一批排球,每班配2个,学校另外留10个,如果这个学校共有n个班,总共需多少个排球?
若学校有15个班(即n=15),则添置排球总数为多少个?若有20个班呢?
最后,教师根据学生的回答情况,指出:需要添置排球总数,是随着班数的确定而确定的;当班数n取不同的数值时,代数式2n+10的计算结果也不同,显然,当n=15时,代数式的值是40;当n=20时,代数式的值是50?我们将上面计算的结果40和50,称为代数式2n+10当n=15和n=20时的值?这就是本节课我们将要学习研究的内容?
二、师生共同研究代数式的值的意义
1、用数值代替代数式里的字母,按代数式指明的运算,计算后所得的结果,叫做代数式的值?
2、结合上述例题,提出如下几个问题:
(1)求代数式2x+10的值,必须给出什么条件?
(2)代数式的.值是由什么值的确定而确定的?
当教师引导学生说出:“代数式的值是由代数式里字母的取值的确定而确定的”之后,可用图示帮助学生加深印象?
然后,教师指出:只要代数式里的字母给定一个确定的值,代数式就有唯一确定的值与它对应?
(3)求代数式的值可以分为几步呢?在“代入”这一步,应注意什么呢?
下面教师结合例题来引导学生归纳,概括出上述问题的答案?(教师板书例题时,应注意格式规范化)
例1当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值?
解:当x=7,y=4,z=0时,
x(2x-y+3z)=7(27-4+30)
=7(14-4)
=70
注意:如果代数式中省略乘号,代入后需添上乘号?
例2根据下面a,b的值,求代数式a2-的值?
(1)a=4,b=12,(2)a=1,b=1?
解:(1)当a=4,b=12时,
a2-=42-=16-3=13;
(2)当a=1,b=1时,
a2-=-=?
注意(1)如果字母取值是分数,作乘方运算时要加括号;
(2)注意书写格式,“当……时”的字样不要丢;
(3)代数式里的字母可取不同的值,但是所取的值不应当使代数式或代数式所表示的数量关系失去实际意义,如此例中a不能为零,在代数式2n+10中,n是代数班的个数,n不能取分数最后,请学生总结出求代数值的步骤:①代入数值②计算结果
三、课堂练习
1、(1)当x=2时,求代数式x2-1的值;
(2)当x=,y=时,求代数式x(x-y)的值?
2、当a=,b=时,求下列代数式的值:
(1)(a+b)2;(2)(a-b)2?
3、当x=5,y=3时,求代数式的值?
答案:1.(1)3;(2);2.?(1);(2);3..?
四、师生共同小结
首先,请学生回答下面问题:
1、本节课学习了哪些内容?
2、求代数式的值应分哪几步?
3、在“代入”这一步应注意什么”
其次,结合学生的回答,教师指出:(1)求代数式的值,就是用数值代替代数式里的字母按照代数式的运算顺序,直接计算后所得的结果就叫做代数式的值;(2)代数式的值是由代数式里字母所取值的确定而确定的?
五、作业
当a=2,b=1,c=3时,求下列代数式的值:(1)c-(c-a)(c-b);
数与代数一教案篇7
教学目标
1、使学生能把简单的与数量有关的词语用代数式表示出来;
2、初步培养学生观察、分析和抽象思维的能力
教学重点和难点
重点:把实际问题中的数量关系列成代数式?
难点:正确理解题意,从中找出数量关系里的运算顺序并能准确地写成代数式???
教学手段
现代课堂教学手段
教学方法
启发式教学
教学过程
(一)、从学生原有的认知结构提出问题
1、用代数式表示乙数:(投影)
(1)乙数比x大5;(x+5)
(2)乙数比x的2倍小3;(2x-3)
(3)乙数比x的倒数小7;(-7)
(4)乙数比x大16%?((1+16%)x)
(应用引导的方法启发学生解答本题)
2、在代数里,我们经常需要把用数字或字母叙述的一句话或一些计算关系式,列成代数式,正如上面的练习中的问题一样,这一点同学们已经比较熟悉了,但在代数式里也常常需要把用文字叙述的一句话或计算关系式(即日常生活语言)列成代数式?本节课我们就来一起学习这个问题?
(二)、讲授新课
例1用代数式表示乙数:
(1)乙数比甲数大5;(2)乙数比甲数的2倍小3;
(3)乙数比甲数的倒数小7;(4)乙数比甲数大16%?
分析:要确定的乙数,既然要与甲数做比较,那么就只有明确甲数是什么之后,才能确定乙数,因此写代数式以前需要把甲数具体设出来,才能解决欲求的乙数?
解:设甲数为x,则乙数的代数式为
(1)x+5(2)2x-3;(3)-7;(4)(1+16%)x?
(本题应由学生口答,教师板书完成)
最后,教师需指出:第4小题的答案也可写成x+16%x?
例2用代数式表示:
(1)甲乙两数和的2倍;
(2)甲数的与乙数的的差;
(3)甲乙两数的平方和;
(4)甲乙两数的和与甲乙两数的差的积;
(5)乙甲两数之和与乙甲两数的差的积?
分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式?
解:设甲数为a,乙数为b,则
(1)2(a+b);(2)a-b;(3)a2+b2;
(4)(a+b)(a-b);(5)(a+b)(b-a)或(b+a)(b-a)?
(本题应由学生口答,教师板书完成)
此时,教师指出:a与b的和,以及b与a的和都是指(a+b),这是因为加法有交换律?但a与b的差指的是(a-b),而b与a的差指的是(b-a)?两者明显不同,这就是说,用文字语言叙述的句子里应特别注意其运算顺序?
例3用代数式表示:
(1)被3整除得n的数;
(2)被5除商m余2的数?
分析本题时,可提出以下问题:
(1)被3整除得2的数是几?被3整除得3的数是几?被3整除得n的数如何表示?
(2)被5除商1余2的数是几?如何表示这个数?商2余2的数呢?商m余2的数呢?
解:(1)3n;(2)5m+2?
(这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备)?
例4设字母a表示一个数,用代数式表示:
(1)这个数与5的和的3倍;(2)这个数与1的差的;
(3)这个数的5倍与7的和的一半;(4)这个数的平方与这个数的的和?
分析:启发学生,做分析练习?如第1小题可分解为“a与5的和”与“和的3倍”,先将“a与5的和”例成代数式“a+5”再将“和的3倍”列成代数式“3(a+5)”?
解:(1)3(a+5);(2)(a-1);(3)(5a+7);(4)a2+a?
(通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力?)
例5设教室里座位的行数是m,用代数式表示:
(1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位?
(2)教室里座位的行数是每行座位数的,教室里总共有多少个座位?
分析本题时,可提出如下问题:
(1)教室里有6行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?
(2)教室里有m行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?
(3)通过上述问题的解答结果,你能找出其中的规律吗?(总座位数=每行的座位数×行数)
解:(1)m(m+6)个;(2)(m)m个?
(三)、课堂练习
1?设甲数为x,乙数为y,用代数式表示:(投影)
(1)甲数的2倍,与乙数的的和;(2)甲数的与乙数的.3倍的差;
(3)甲乙两数之积与甲乙两数之和的差;(4)甲乙的差除以甲乙两数的积的商?
2?用代数式表示:
(1)比a与b的和小3的数;(2)比a与b的差的一半大1的数;
(3)比a除以b的商的3倍大8的数;(4)比a除b的商的3倍大8的数?
3?用代数式表示:
(1)与a-1的和是25的数;(2)与2b+1的积是9的数;
(3)与2x2的差是x的数;(4)除以(y+3)的商是y的数?
?(1)25-(a-1);(2);(3)2x2+2;(4)y(y+3)?〕
(四)、师生共同小结
首先,请学生回答:
1?怎样列代数式?2?列代数式的关键是什么?
其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律列代数式:
(1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不唯一);
(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;
(3)把用日常生活语言叙述的数量关系,列成代数式,是为今后学习列方程解应用题做准备?要求学生一定要牢固掌握
练习设计
1、用代数式表示:
(1)体校里男生人数占学生总数的60%,女生人数是a,学生总数是多少?
(2)体校里男生人数是x,女生人数是y,教练人数与学生人数之比是1∶10,教练人数是多?
2、已知一个长方形的周长是24厘米,一边是a厘米,
求:(1)这个长方形另一边的长;(2)这个长方形的面积?
板书设计
§3.2代数式
(一)知识回顾(三)例题解析(五)课堂小结
例1、例2
(二)观察发现(四)课堂练习练习设计
教学后记
由于列代数式的内容既是本章的重点,又是本书的重点,同时也是学生学习过程中的一个难点,故在设计其教学过程时,注意所选例题及练习题由易到难,循序渐进,使学生逐步地掌握好这一内容,为今后的学习打下一个良好的基础?同时,也使学生的抽象思维能力得到初的培养。