人教版数学教案精选5篇
细心设计的教案能够激发学生的学习兴趣,教师们为了引导学生主动学习,需要认真制定教案,下面是小文学范文网小编为您分享的人教版数学教案精选5篇,感谢您的参阅。
人教版数学教案篇1
教学目标:
1、初步理解小数与分数之间的内在联系,明确一位小数用十分之几来表示,两位小数用百分之几来表示,三位小数用千分之几来表示。掌握相邻两个计数单位间的进率。
2、在合作与交流中的过程中,体验探究发现和迁移推理的学习方法,感受数学学习的乐趣。
教学重点:
理解和掌握小数的意义。
教学难点:
理解小数的意义。
教学过程:
一、导入课题
三年级我们已经初步认识了小数,今天我们继续研究小数的意义。板书课题。
二、小数的意义
板书0.1 0.01猜猜第三个写什么?0.001你们很会推理。
像0.1,小数点后面只有一位数,就是一位小数。老师先写了一个一位小数,又写了一个两位小数,最后写了一个...?
板书一位小数两位小数三位小数
1、一位小数
这节课咱们要认识小数的意义,就从0.1开始研究。把一个正方形看做1,0.1该怎样表示呢?请你试着画一画、涂一涂,在自己的正方形纸上表示出0.1。
出示学生作品:有错的,有对的。
到底哪位同学的意见是正确的呢?我们能用原来的知识来说明其中的道理吗?
学生:把正方形纸看成一元,0.1元就是一角,一元里面有10个一角,所以应该把正方形纸平均分成10份,其中的一份就是0.1。
大家的意见统一了,谁来说说0.1究竟表示什么?
小结:把1平均分成10份,其中的一份是十分之一,也就是0.1。
板书:=0.1
那这样的2份、3份、5份呢?板书:=0.2 =0.3 =0.5
同学们观察一下,刚才我们看到的这些小数都是...?一位小数
师:你能说一说一位小数表示的意思了吗?
小结:一位小数表示十分之几。
一份,也就是十分之一,叫做一位小数的计数单位,写作0.01
板书:计数单位:十分之一写作:0.1
0.2里面有几个0.1?0.3呢?0.5呢?
出示课件:涂色部分是多少?(0.9)0.9里面有几个0.1?
再添上1个0.1是多少?(10个0.1)
课件演示:10个0.1是1,1里面有10个0.1。
2、两位小数。
(1)第二个小数0.01表示什么意思?还是那张纸,看做1,如果想表示0.01,想一想你会怎么做呢?
课件展示:正方形用来表示1,0.01就表示百分之一。
涂色部分是0.01,空白部分呢?0.99表示什么?
0.99里面有几个0.01?
请你在自己的方格纸上涂出自己喜欢的两位小数,想一想它表示什么,里面有几个0.01?
(2)学生自由活动,点名回答。
(3)两位小数有什么特点?
小结:两位小数表示百分之几,计数单位是百分之一,写作:0.01。
出示课件:涂色部分表示多少?(0.09)里面有几个0.01?再添上1个0.01是多少?演示,板书:10个0.01是0.1,0.1里面有10个0.01
3、认识三位小数。
(1)根据一位小数和两位小数的特点,你能总结三位小数的特点吗?
让学生自己归纳出三位小数。三位小数可以表示为千分之几,计数单位是千分之一,写作:0.01。
4、一位小数、两位小数、三位小数计数单位之间的关系可以用一幅图表示。
课件演示:一个正方体平均分成10份,其中一份是十分之一,也就是0.1;继续平均分成10份,其中一份占正方体的百分之一,也就是0.01;还能平均分成10份,一份占正方体的千分之一,也就是0.001。
5、数轴上认识小数
出示课件:我们在正方形和正方体上找到了小数,数轴上的小数你能找到吗?
(1)、课件演示:0.1;9.1数轴下面的数字变了,小数就发生了变化。
(2)、在数轴上找到3.14,3.141
三:知识眼延伸
3.14这个小数,小数点后面还有很多的数,这是我们六年级要学习的圆周率。
课件:
1、介绍圆周率
2、介绍0.618
四:课堂总结:
如果这节课满分是1,你会为自己的表现打多少分呢?
人教版数学教案篇2
一、教学内容
课本p38~40。
二、教学目标
1.知识与技能
使学生理解体积的意义;认识常用的体积单位:立方米、立方分米、立方厘米。
2.过程与方法
让学生经历探索体积和体积单位的过程,发展学生的空间观察能力和培养学生的推理能力。
3.情感、态度与价值观
使学生形成空间观念,体验所学知识与现实生活的联系,使其能运用所学知识解决生活中简单的问题,从中获得价值体验。
三、重点难点
1.教学重点
体积概念的建立以及对体积计量方法的理解。
2.教学难点
感知物体的体积以及建立体积单位的概念。
四、教学用具
1立方米、1立方分米、1立方厘米的模型;水杯,水,沙子,大小石块(用线系好),木块等;10个1立方厘米的正方体。
五、教学设计
(一)铺垫选择研究方向
1.引入:在装有半杯蓝色水的玻璃杯中(先在水面处做个记号)放入一块石块。
2.观察思考。
(视频脚本三:长方体和正方体4.土豆放入水杯的动画片。)
(1)水面的位置发生了什么变化?杯中的水为什么会上升?
(2)杯中的水为什么会上升,这就是我们今天要研究的内容。
(二)发现并认识体积
1.想一想:是不是所有的物体都占有一定的空间?用桌上提供的物品验证。有:木块、沙子、火柴盒、工具箱、石块、玻璃球……
2.教师巡视与学生一起探讨。
3.提问汇报。
(1)你们是怎样进行实验的?
(2)你们在实验过程中观察到了什么现象?
(3)学生动手操作。
(4)学生回答。
生:我们拿出自带的装满细沙的杯子,先把细沙倒在纸上,把一块木块放入杯中,然后再把细沙倒入杯中,沙子不能全部倒入杯中,有剩余部分,因为木块占有一定空间。
4.表象再现。
(1)闭眼回忆刚才验证物体的样子。
(2)学生闭眼想象。
5.抽象体积的概念。
(1)物体所占的空间一样吗?
(2)学生回答。
生:我们先把小石块放入杯中,然后在水面上升处作个记号。取出石块,再放入大一些的石块,发现水面比原来的水面高了。
(3)为什么上升的水面会比原来的高?
(4)学生回答。
生:因为大石块占的空间大,所以上升的水面比原来的高。也就是说,物体的大小不一样,所占空间的大小也不一样。
6.看来物体所占空间有大有小,物体所占空间的大小就是物体的体积。
(1)什么叫物体的体积?
(2)学生回答:物体所占空间的大小叫做物体的体积。
7.看书质疑。
(三)自我探索体积单位
1.要知道一个物体的体积有多大,或者一个物体的体积比另一个物体的体积大多少或少多少,该怎么办?这就需要计量,计量体积要用体积单位。【 】
2.猜想。
你听说过哪些体积单位?
(1)常用的体积单位有哪些?
(2)汇报:将你们学习到的说给大家听听。
(3)学生回答。
棱长1厘米的正方体,体积是1立方厘米;
棱长1分米的正方体,体积是1立方分米;
棱长1米的正方体,体积是1立方米。
(视频脚本三:第三单元长方体和正方体5.视频“1立方米的空间有多大”的演示)
3.估量体积单位。
(1)1立方厘米的空间有多大?比画比画。
(2)什么物体的体积大约接近1立方厘米?
(3)1立方分米有多大?比画比画。
(4)什么物体的体积接近1立方分米?
(5)1立方米呢?
(6)1立方米有多大?利用一些工具体验大小,你们钻进去试一试。(准备3个米尺)
4.填入适当的单位。
(1)橡皮的体积大约是5()。
(2)桌子的体积大约是240()。
5.质疑。
(四)体积的初步计量
1.教师演示(学生跟着摆)。
(1)出示2个1立方厘米的正方体,拼成一个长方体,它的体积是多少?为什么?
(2)出示6个1立方厘米的正方体,拼成一个长方体,它的体积是多少?为什么?
(3)(改变长方体的摆法)这是长方体吗?它的体积是多少?为什么仍是6立方厘米?
(4)(再改变形状)形状变了,体积有没有变?为什么?
(5)为什么不管摆什么形状,体积都是6立方厘米?
2.学具操作。
(1)你们每人桌上都放有10个1立方厘米的正方体,现在请你们摆一个体积是9立方厘米的长方体,想想怎么摆?
(2)为什么所摆的长方体的体积都是9立方厘米?
3.归纳概括。
(四人一组讨论)根据刚才所摆的图形,你怎么知道这些物体的体积是多少的?
(五)巩固练习
1.填空
常用的体积单位有()、()、()。
常用的面积单位有()、()、()。
常用的长度单位有()、()、()。
棱长()的正方体的体积是1立方厘米。
棱长()的正方体的体积是1立方分米。
棱长()的正方体的体积是1立方米。
2.在括号里填上适当的单位。
(1)一根粉笔的体积大约是10()。
(2)讲台桌的体积大约是0.4()。
(3)一本《新华字典》的体积大约是0.35()。
(4)一张信纸的面积大约是5()。
(5)一块城砖的体积大约是3()。
3.拼一拼,说说是由几个1立方厘米的正方体组成的?
(六)全课总结
通过这节课你有哪些心得和体会?你还有哪些问题?
(七)板书设计
体积和体积单位
意义:物体所占空间的大小叫做物体的体积。
单位:立方厘米、立方分米、立方米。
计量:要看这个物体含有多少个体积单位。
人教版数学教案篇3
统计教案
一、复习分段整理数据
出示第1题,让学生读懂题目,再独立完成
全班交流:
(1)是交流自己所用的方法,比如可以每统计一个数据之后把该数据做一记号
(2)交流统计结果,检查自己做对了没有
(3)交流自己统计的时候有没有出现问题,其他同学可针对性地提出改进办法
最后要提醒学生注意检查的习惯:数据提供的是20个学生的记录,那在后面的表格中,也应该要有20个“合计”,否则就是遗漏或是重复了。
看统计好的表格,说说你从这表格中读懂了哪些信息?
二、条形统计图:
1、看图:
出示第2题:先让学生读懂题目
回答问题一:这一周的用水量,哪天,哪天最低?
你是怎么看出来的?
回答问题二:怎么评价一周的用水量呢?(一般可用用水总量或是平均每天的用水量)想一想:哪种方法更清楚?怎么求平均每天的用水量呢?请你算一算
算完后问:有没有哪天正好是这个平均数“9吨”的?
从条形统计图上看一看,它在整体中处于一个怎样的水平?(不高不低)
从这份条形统计图中,你还想到了什么问题?
2、画图:
出示第3题。先请学生说说各类食品具体所指,按要求分类整理,制成统计图。
完成统计表后继续完成条形统计图,注意不要遗漏了制作时间和直条上的数据。
比较统计表和条形统计图,说说你认为它们各有什么好处?
(统计表能清楚地反映各类数据
条形统计图不仅能反映出各类的具体数据,还能清楚地看出各类之间的多少关系,更加的直观。)
三、游戏规则的公平性
出示第4题。判断3个游戏规则:
1、正方体的三个面写“1”,三个面写“2”。“1”朝上甲赢,“2”朝上乙赢
让学生说说是否公平?为什么?
(1和2都有3次出现的机会,是公平的。)
2、正方体的四个面写“1”,两个面写“2”。“1”朝上甲赢,“2”朝上乙赢
(1有4次出现的机会,2只有2次,是不公平的。)
3、正方体的六个面分别写1~6,朝上的数小于3甲赢,否则乙赢
理解“否则”:小于3的只有1和2,否则就是指剩下的3、4、5、6,有4个,所以是不公平的。
小结:像这样的游戏要判断是否公平,主要看什么?
(决定输赢的次数是否相等)
四、思考:
小明和小刚同时各抛一枚硬币,这两枚硬币落地后如果朝上的面相同,算小明赢;朝上的面一正一反,算小刚赢。这样的游戏规则公平吗?为什么?
可先让学生猜一猜。再互相说说自己是怎么想的。
全班交流的时候,适当板书:
正正、正反;反反、反正有2次出现是一样的,2次是不一样的,所以是公平的。
人教版数学教案篇4
教学内容:
新北师大版一年级下册数学第68页主题图及相关内容。
教学目标:
1、在具体情境中,探索并掌握两位数加一位数进位加法的计算方法,进一步体会计算方法的多样化与化。
2、理解个位相加满十要向十位进一的'算理,掌握进位加法笔算竖式的书写格式。
3、进一步体会加法的意义,感受数的运算与生活的密切联系,提高运用所学知识解决有关的简单实际问题的能力。
探索并掌握两位数加一位数的进位加法的计算方法,体会计算方法的多样性。
理解不同算法的算理,尤其是满十进一的运算规则。
教学准备:
教师:课件
学生:课堂练习本、小棒、计数器。
教学过程:
一、创设情境,激趣导入
课件出现晋江市少儿图书馆照片,简介图书馆,引出课题。
二、自主探索,合作交流
1、观察交流,提出问题
课件出示主题图,请学生观察图,了解数学信息,然后根据信息提出数学问题,写在课堂练习本上。
全班交流学生提出的问题。
2、探索算理,体会多样化
(1)解决问题:《童话世界》和《丛林世界》一共有几本?
指名列出算式:28+4
(2)让学生用自己喜欢的'方法算一算,写在课堂练习本上,然后与同桌交流自己的算法,教师巡视了解情况。
(3)全班交流算法
方法一:摆小棒
方法二:拨计数器
方法三:8+4=12 20+12=32
方法四:28+2=30 30+2=32
方法五:列竖式(指名学生说一说列竖式要注意什么?)
(4)比较讨论算法的简便性
方法一、二比较直观,但需要借助实物;后三种方法比较简便。
三、选择算法,巩固应用
1、解决问题:《童话世界》和《海底世界》一共有几本?
2、解决问题:《童话世界》和《咪咪学院》一共有几本?
要求学生选择比较简便的算法,集体订正时指名学生说说自己是怎样算的。
3、用竖式算一算
58+7= 5+32= 38+6= 8+27=
四、自己评价,课堂小结
这节课你觉得自己表现如何?你有什么收获?
人教版数学教案篇5
教学内容:
长方体和正方体的表面积概念,长方体和正方体表面积的计算
教学目标 :
1.学生通过操作掌握长方体和正方体的表面积的概念,并初步掌握长方体和正方体表面积的计算方法。
2.会用求长方体和正方体表面积的方法解决生活中的简单问题。
3.培养学生分析能力,发展学生的空间概念。
教学重点:
掌握长方体和正方体表面积的计算方法。
教学难点:
会用求长方体和正方体表面积的方法解决生活中的简单问题
教具运用:
长方体、正方体纸盒,剪刀,投影仪
教学过程:
一、复习导入
1.什么是长方体的长、宽、高?什么是正方体的棱长?
2.指出长方体纸盒的长、宽、高,并说出长方体的特征。指出正方体的棱长,并说出正方体的.特征。
二、新课讲授
1.教学长方体和正方体表面积的概念。
(1)请同学们拿出准备好的长方体纸盒,在上面分另标出上、下、前、后、左、右六个面。
师生共同复习长方形的特征。请同学们沿着长方体纸盒的前面和上面相交的棱剪开,得到右面这幅展开图。
(2)请同学们拿出准备好的正方体纸盒,分别标出上、下、前、后、左、右六个面,然后师生共同复习正方体的特征。让学生分别沿着正方体的棱剪开。得到右面正方体展开图。
(3)观察长方体和正方体的的展开图,看看哪些面的面积相等,长方体中每个面的长和宽与长方体的长、宽、高有什么关系?
观察后,小组议一议。引导学生总结长方体的表面积概念。长方体或正方体6个面的总面积,叫做它的表面积。
2.学习长方体和正方体表面积的计算方法。
(1)在日常生活和生产中,经常需要计算哪些长方体或正方体的表面积?
(2)出示教材第24页例1。
理解分析,做一个包装箱至少要用多少平方米的硬纸板,实际上是求什么?(这个长方体饭包装箱的表面积)
先确定每个面的长和宽,再分别计算出每个面的面积,最后把每个面的面积合起来就是这个长方体的表面积。
(3)尝试独立解答。
(4)集体交流反馈。
老师根据学生的解题思路进行板书。
方法一:长方体的表面积=6个面的面积和
0.70.4+0.70.4+0.50.4+0.50.4+0.70.5+0.70.5=0.28+0.28+0.2+0.2+0.35+0.35=1.66(m2)
方法二:长方体的表面积=上、下两个面的面积+前、后两个面的面积+左、右两个面的面积
0.70.42+0.50.42+0.70.52=0.7+0.56+0.4=1.66(m2)
方法三:(上面的面积+前面的面积+左面的面积)2
(0.70.4+0.50.4+0.70.5)2=0.832=1.66(m2)
(5)比较三种方法,你认为求长方体的表面积关键是找什么?这三种方法你喜欢哪种方法?
(6)请同学们尝试自己解答教材第24页例2, 集体交流算法,请学生说说你是怎样解答计算正方体表面积的。
三、课堂作业
1. 完成教材第23页做一做。
2.完成教材第24页做一做。
3.完成教材第25~26页练习六第1、2、3、4、6、7题。
四、课堂小结
今天我们又学习了长方体和正方体的表面积,并掌握了长方休和正方体表面积的计算方法,通过学习,你能说说你的收获吗?
板书设计:
长方体和正方体的表面积(一)