鱼的数学教案优秀7篇
有了教案,教师可以有目的地选择教学方法和策略,教案可以根据学生的学习水平和兴趣,选择合适的教学资源和教学方法,小文学范文网小编今天就为您带来了鱼的数学教案优秀7篇,相信一定会对你有所帮助。
鱼的数学教案篇1
教学目标:
1.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角.
2.理解对顶角相等,并能运用它解决一些问题.
重点:
邻补角、对顶角的概念,对顶角的性质与应用.
难点:
理解对顶角相等的性质的探索.
教学过程:
一、创设情境,引入新课
引导语:
我们生活的世界中,蕴涵着大量的相交线和平行线.
本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质,研究平行线的性质和平行线的判定以及图形的平移问题.
二、尝试活动,探索新知
教师出示一块布片和一把剪刀,表演剪刀剪布的过程.
教师提出问题:剪布时,用力握紧把手,发生了什么变化?进而使什么也发生了变化?
学生观察、思考、回答,得出:
握紧把手时,随着两个把手之间的角逐渐变小,剪刀刀刃之间的角相应变小.如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刀刃之间的角也相应变大.
教师提问:我们可以把剪刀抽象成什么简单的图形?
学生回答:画成两条相交的直线,学生画直线ab、cd相交于点o,并说出图中4个角.
教师提问:两两相配共能组成几对角?各对角的位置关系如何?根据不同的位置怎么将它们分类?
学生用量角器分别量一量各角的度数,发现各对角的度数有什么关系?(学生得出结论:相邻的两个角互补,对顶的两个角相等)
学生根据观察和度量完成下表:
两条直线相交、所形成的角、分类、位置关系、数量关系
教师提问:
如果改变∠aoc的大小,会改变它与其他角的位置关系和数量关系吗?
学生思考回答:
只会改变数量关系而不会改变位置关系.
师生共同定义邻补角、对顶角:
有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.
如果两个角有一个公共顶点,而且一个角的两边分别是另一个角的两边的反向延长线,那么这两个角叫做对顶角.
教师提问:
你同意下列说法吗?如果错误,如何订正?
1.邻补角的“邻”就是“相邻”,就是它们有一条“公共边”,“补”就是“互补”,就是这两个角的另一条边在同一条直线上.
2.邻补角可看成是平角被过它的顶点的一条射线分成的两个角.
3.邻补角是互补的两个角,互补的两个角也是邻补角.
学生思考回答:1、2是对的,3是错的.
第3个应改成:邻补角是互补的两个角,互补的两个角不一定是邻补角.
教师让学生说一说在学习对顶角的概念后,通过实际操作获得的直观体验.
教师把说理过程规范地板书:
在右图中,∠aoc的邻补角是∠boc和∠aod,所以∠aoc与∠boc互补,∠aoc与∠aod互补,根据“同角的补角相等”,可以得出∠aod=∠boc,类似地有∠aoc=∠bod.
教师板书对顶角的性质:
对顶角相等.
强调对顶角的概念与对顶角的性质不能混淆:
对顶角的概念是确定两角的位置关系,对顶角的性质是确定互为对顶角的两角的数量关系.
三、例题讲解
?例】 如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数.
?答案】 由邻补角的定义,得∠2=180°-∠1=180°-40°=140°;由对顶角相等,得∠3=∠1=40°,∠4=∠2=140°.
四、巩固练习
1.判断下列图中是否存在对顶角.
2.按要求完成下列各题.
(1)两条直线相交,构成哪两种特殊位置关系的角?指出下图中具有这两种位置关系的角.
eq o(sup7(,图(1)) ,图(2))
(2)如图,若∠aod= 90°,那么直线ab与cd的位置关系如何?
?答案】
1.都不存在对顶角.
2.(1)对顶角,邻补角.
对顶角:∠aoc和∠bod,∠aod和∠boc.
邻补角:∠aoc和∠aod,∠aoc和∠boc,∠aod和∠bod,∠boc和∠bod.
(2)垂直.
五、课堂小结
教师引导学生进行本节课的小结并强调对顶角的概念与对顶角的性质不能混淆:对顶角的概念是确定两角的位置关系,对顶角的性质是确定互为对顶角的两角的数量关系.
教学反思
通过本节课的学习,大部分学生能积极主动地参与到学习活动中来,并能积极主动地提出各类问题并解决问题,达到了基本的教学效果.但是由于对新概念的理解不是很深刻,所以在应用方面存在不足,针对这一情况,教师应选择典型的例题,详细讲解,指导学生探求解题的思路和方法,加深对概念的理解,做到熟练的应用。
鱼的数学教案篇2
【活动目标】
1、喜欢参与数学活动,愿意在集体面前大胆讲述自己的操作结果
2、在游戏中能边操作边点数5以内的实物,感知数量,并说出总数
3、能按要求正确取放学具、材料,并体会和小朋友一起游戏的快乐
4、激发幼儿学习兴趣,体验数学活动的快乐,并感受集体活动的乐趣。
5、喜欢数学活动,乐意参与各种操作游戏,培养思维的逆反性。
【重点难点】
1、在游戏中能手口一致点数5以内的实物(夹子),感知5以内的数量,并说出总数。
2、学会按卡片上的点子数目、数字匹配相应数量的夹子。
【活动准备】
经验准备:
1、幼儿有4以内实物的点数经验。
2、幼儿玩耍过夹子,能够用夹子自由的夹东西。
物质准备:
粉、黄、蓝各色小鱼造型的夹子及各种水果造型的夹子每人5个,毛线球、小刺猬纸样每人1个,教师使用的大刺猬纸样、数字5及猫妈妈头饰各1个。
【活动过程】
一、游戏“淘气的小鱼”。找一找、说一说,复习看实物感知4以内的点数。
1、猫妈妈为幼儿准备各色小鱼若干条,请幼儿每人选4条,看小鱼都能咬住衣服的什么地方?看谁和别人的不一样?
2、请幼儿说出自己的小鱼咬住哪了?一共有几条小鱼?数数看?
3、老师与幼儿一起手口一致的点数夹子数量,并说出总数是4。
二、夹一夹、数一数,学习5以内的点数
1、游戏“好玩的.毛线球”,看点卡感知5以内的数
(1)教师出示带有黑点的毛线球,告诉幼儿鱼食藏在小毛线球里,示范有几个毛线球就喂几条小鱼。
(2)幼儿每人自选毛线球,练习夹一定数量的夹子。
(3)请3-4名幼儿点数,看看毛线球上的小鱼食是否都喂到小鱼了。
2、游戏“给小刺猬夹长刺”,看数字感知5以内的数。
(1)教师出示有数字5的小刺猬卡片,要求幼儿按照数字的数量夹相应的小鱼。
(2)幼儿选刺猬,根据数字夹夹子,巩固幼儿对数字5的认识。
①引导不会点数5的幼儿,先将5条小鱼找到后,再一个一个的夹上去。
三、游戏“小刺猬扎水果”,有几个长刺就扎几个果子,扎在小刺猬的哪都行。
要求:
①教师引导幼儿会给小刺猬身上的夹子长刺夹相应数量的水果。
②幼儿在游戏中巩固练习今天的数学内容。
四、延伸活动
1、将活动材料投放到益智区供给幼儿继续学习。
2、针对个别还没有掌握点数的幼儿,教师继续在活动区进行指导。
鱼的数学教案篇3
教学内容:
人教版小学数学第九册《相遇问题》第58准备题、例5及做一做,并完成练习十三1-3题。
教学目的:
1、使学生理解相遇问题的意义及特点。
2、学会分析相遇问题的数量关系,掌握相遇求路程的应用题的解答方法。
3、明白具体情况具体分析的道理,培养学生初步的辨证唯物主义观点。
教学重点:
理解相遇问题的数量关系,建立解题思路,掌握解题方法。
教学难点:
理解相遇问题中速度和、相遇时间和总路程之间的关系。
教学准备:
计算机辅助教学软件一套。
教学过程:
一、动画引入,揭示课题
1、通过电脑演示了解相遇问题中两个物体的运动情况。
电脑演示一声枪响后,两人相向而行,相遇前停下来。
提问:一声枪响后,你看到了什么?注意他们的出发时间和运动方向是怎样的?
(板书:同时出发、相向而行)
如果他们继续走下去,结果可能会怎样?
(相遇、不相遇就停下来、相遇以后相交而过)
结果究竟怎么样呢?请同学们继续观察。
电脑演示两人相遇。
(板书:结果相遇)
谁能完整的说说他们是怎样运动的?
[评析:运用多媒体所具有的声、光、色、形的特点,创设动态情境,抓住"相遇问题"的关键,让学生形象地理解"同时出发"、"相向而行" 、"结果相遇"这几个相遇问题的几个基本要素,为例题教学扫除了文字障碍。并且通过生动形象卡通画导入新课,大大激发了学生学习的兴趣。]
2、揭示课题:
像这样,两人或两个物体同时从两地出发,相向而行,最后相遇,我们称这样的问题为相遇问题。
(板书课题:相遇问题)
过去我们学过一个物体运动的行程问题。你们还记得一个物体运动时,速度、时 间、路程三者之间有什么样的关系?
(板书:速度×时间=路程)
今天研究的相遇问题中,运动物体变成了两个,他们的速度、时间和路程三者之间又有什么样的关系呢?今天咱们就一块儿来研究这个问题。
二、引导探究,教学新知
(一)教学准备题。
1、电脑配音显示准备题。
我是张华,我的速度是每分60米。我是李诚,我的速度是每分70米。张华家距李诚家390米,他俩同时从家里出发,向对方走去。下面是他们两人走的时间和路程的变化情况表。请同学们先看动画,再完成下表,然后讨论以下两个问题。
走的时间 张华走 的路程 李诚走 的路程 两人所走 的路程和 现在两人 的距离 1分 60米 79米 2分 3分
讨论:①出发3分后,两人之间的距离变成了多少?说明了什么?
②相遇时,两人所走路程的和与两家的距离有什么关系?
2、观察填表,讨论分析。
(1)学生填写表格,并讨论屏幕上的两个问题。
(2)全班校对答案。提问:2分时两人所走路程的和260米你是怎样计算的?(①120+140=260米②30×2=260米)
(3)学生回答讨论的两个问题。
小结:刚才我们通过自己观察、填写、讨论,发现了两个物体同时出发、相向而行,相遇时,两人所走路程的和恰好就是两家的距离。下面我们就利用这个规律自己来解决一些实际问题。
[评析:在准备题教学中,教师放手让学生自己观察、填写、讨论,不但使学生深刻理解了两人所走的路程与两家距离的关系,为研究解题方法作了充分的准备,而且充分体现了学生的自主学习精神。]
(二)教学例5。
1、电脑出示例5及线段图:小强和小丽同时从自己家里走向学校。小强每分走65米,小丽每分走70米,经过4分。两人在校门口相遇。他们两家相距多少米?
2、学生尝试解答,两生上台板书。 65×4 + 70×4(65 + 70)×4=260 + 280 =135×4 =540(米)=540(米)
3、学生自己分析解题思路:
①请用第一种方法的同学说说你是怎样想的?
提问:题中只有一个4,为什么算式中出现了两个4?
师:经过4分两人相遇,说明相遇时两人都行了4分,因此我们也可以把这个时间称为相遇时间。相遇时间在这种解法中要用到两次。
②请用第二种方法的同学说说你的解题思路又是什么?
[评析:在学生已掌握路程、速度、时间三者间关系的基础上,联系学生已有的生活实际,通过自己探索,寻求出解答求相遇路程的思路,从而提高了学生分析问题和决问题的能力。]
4、通过电脑演示强化两种解法的解题思路。
通过刚才的分析我们知道,相遇问题中求路程有几种解法?请看屏幕。
电脑演示:一种是先求出小强走的路程和小丽走的路程,再加起来就得到两人所走路程的和,也就是两家的距离;另一种解法是先把小强每分所走的路程和小丽每分所走的路程加起来,得到每分两人所走路程的和,因为经过4分相遇,再乘以相遇时间4,就得到了4分所走路程的和,也就是两家的距离。
[评析:通过大屏幕色彩鲜艳的线段闪铄演示,加深了学生对第一种方法的理解;"速度和"的概念是第二种解法的难点,通过将两人每分各行的路程"移动、合并",形象地揭示了"速度和"的内涵。教者灵活地利用多媒体图象的移动、合并、返回的运动特点,揭示"速度和、相遇时间、距离"之间的关系,加深了学生对第二种方法的理解。]
5、总结数量关系式:请同学们观察这两种解法,你更喜欢哪一种?根据这种解法你发现在相遇问题中,速度、时间、路程三者之间有什么关系?
(板书:和、相遇)有了这个数量关系式,你知道相遇问题中路程需要知道哪些条件?
6、学生看书质疑。
三、巩固练习,深化提高
1、根据题意连线。
两列火车从两地同时相向开出。甲车每小时行44千米,乙车每小时行52千米,经过2.5小时两车相遇。
44×2.5 两人的速度和 52×2.5 两地的距离 44 + 52 相遇时甲车所行的路程 (44 + 52)×2.5
相遇时乙车所行的路程 44×2.5 +52×2.5 2、用两种方法解答。
(59页做一做第1题)
2、只列式不计算。(练习十三1、2题)
学生独立完成,集体订正。反馈中引导学生把第2题与前面的习题比较,明确虽然两车运动方向、出发地点等情况与前面习题不同,但它们都是求两个物体所行路程的和,都可以用速度和×时间=路程得到。
[评析:练习的设计由浅入深,有坡度有层次,目的性强。先通过连线题强化相遇问题中的各个概念;然后解决与相遇问题类似的应用题,实现知识、技能和方法的迁移;最后解决有变化的相遇问题,突破固定的思维框架。重点突出,一题一得,既减轻了学生的过重负担,又提高了教学效益。]
四、闯关游戏,拓思创新:
电脑演示闯关画面,配音出示游戏规则。
1、第一关:猫和老鼠从两地相向而行,猫每分跑50米,老鼠每分跑6米。跑了2分,还相距120米,求两地相距多少米?
提问:用速度和乘以时间得到了路程,为什么还要加120?
2、第二关:甲、乙两辆汽车从两地相对行驶。甲车每小时行75千米,乙车每小时行69千米。甲车开出后1小时,乙车才开出,再过2小时两车相遇。两地相距多少千米?
3、第三关:甲乙两人从两地相向而行,甲每分行40米,乙每分行45米。相遇以后相交而过,走了4分,两人相距90米,求两地相距多少米?
提问:为什么每一种算法都要减90?
4、小结:今后同学们在解答两个物体运动的行程问题时,首先要弄清他们运动的时间、方向和结果,再灵活运用相遇问题的思路进行解答。
[评析:首先,通过游戏,激发了学生的学习兴趣,使学生在乐中学习;其次,通过变式练习,让学生灵活应用所学知识解答问题,让学生明白具体情况具体分析的道理,培养学生初步的辨证唯物主义观点。]
鱼的数学教案篇4
教学目标:
1。结合具体情境和问题,经历自主尝试计算经过时间的过程。
2。会用自己的方法计算完成某件事情经过的时间。
3。通过我国“神舟”五号载人飞船成功发射的事情,受到热爱科学、
热爱祖国的教育,切身体会到作为一个中国人的骄傲和自豪。
教学准备:课件、28页列车时间表每生一份。
教学过程:
一、导入
通过上节课的学习,我们都知道,邮电、交通、广播等部门在工作中需要很强的时间观念,在我们的航天事业上更需要有很强的时间观念,我们都知道20xx年10月16日,中国首次载人航天飞行取得了圆满的成功。神五的起飞降落,及降落地点都是很多的科学家经过精密的计算得出的结果。当然了,我们还没有办法参与这些精密的计算,不过有一些简单的计算我们还是可以进行的,同学们有兴趣尝试一下吗?
二、自主尝试
课件出示例题。
指名学生读题。
让我们来试一试吧。
某某同学的算法和书中红红的算法是一样的,让我们一起来看看他们是怎么样算的。
你还有其他的算法吗?
同学们完成的真棒,看来同学们数学学得真不错,真心希望学生们在数学的海洋里能够如鱼得水。
让我们一起来回顾一下“神五”的一些精彩画面。
引导学生感受我们的祖国太伟大了!
结合“兔博士网站”的内容,介绍我国航天事业的发展情况,激发学生作为一个中国人的自豪感。
三、试一试
同学们,刚才我们经历了计算经过时间的一个全过程,你们有没有信心完成更难一点的挑战呢。
学生拿出师给准备好的列车时刻表。
师:你了解到哪些信息?
生答。
师:同学们了解到这么多信息,想必不会被老师的问题给难住了,请看大屏幕。
生尝试解决。
师:孩子们,你们真了不起。不仅能够解决问题,还能自己提出问题并解决了
四、练一练
师:孩子们,你们喜欢看电视吗?
生:喜欢。
师:每个电视台呢都有自己的一个节目单,我们来看一看中央七台的节目单吧。
师:这个跟我们刚才接触到的不太一样,它只有开始的时间,没有结束的时间,我们怎么计算它的经过时间呢?
学生讨论回答。
师:你真聪明,那我们先来计算一下,大风车大约播放多长时间。
生自己完成
师:同学们完成的不错。接下来同学们自己给自己提一个问题并且完成。可以吗?
生自己完成。
交流自己的结果。
使学生受到热爱科学、热爱祖国的教育。
让学生交流各自的算法,鼓励学生提出其他问题并解答。
引导学生读懂列车时刻表。
问题提出后,学生兴趣盎然,纷纷动手进行计算,很快列出具体作息时刻,方法大致有如下几种:
1、数手指计算。
2、画时间轴,在轴上数出经过时间。
3、画出模拟钟面,标上睡起时刻再数出经过时间。
4、少部分学生笔算。
1.t1次列车是从北京西开往长沙的,开车时刻是下午5点。
2.t2次列车是从长和开回北京西的,开车时刻是下午4点36分。
3.向上箭头表示进京,下向箭头表示离京。
4.t1次列车到达郑州的时刻是23点29分。
5.t1次列车到达武昌的时刻是5点01分。
6.t1次列车到达岳阳的时刻是7点12分。
7.t2次列车到达岳阳的时刻是17点56分。
8.t2次列车到达武昌的时刻是20点04分。
9.t2次列车到达郑州的时刻是1点39分
1. 每个节目的结束时间其实就是它后边的节目开始的时间。
2. 可是这里边还有广告时间,因此如果我们把每个节目看结束时间看成后边的节目开始时间的话,里边是加了广告的时间。所以算出来的节目时间只是大约的时间。
鱼的数学教案篇5
1、通过生活中的情境,进一步体会小数除法在实际生活中的应用。
2、利用已有知识,自主探究除数是整数商是小数的小数除法的计算方法。
3、正确掌握已学过的小数除法的计算方法,并能运用小数除法解决日常生活中的简单问题。
教学重点:
除数是整数,商是小数的小数除法的计算方法。
教学难点:
除得的结果有余数,补“0”继续除。
教学过程:
一、复习导入
课件出示情境主题图
开学了,班级购置了打扫卫生用具,买6把笤帚共花了18.6元,买4个簸箕共花了24元。你能提出哪些问题?怎样计算?
引导学生列出算式并独立计算:18.6÷6 24÷4
计算后说一说整数除法与小数除法的异同。
二、对比中探索,交流中生成
师:复习题中的两道问题同学们解决得非常好,如果老师把它们稍作改动,你还会不会计算呢?
教师把情境题中的18.6改成18.9,把24改成26.
1、初步尝试,发现问题。
请你尝试计算这两题,你发现了什么?
2、独立思考,尝试解决。
师:有余数还能不能继续除下去?该怎么继续除?试算18.9÷6
3、讨论交流,异中求同。
(1)在小组内汇报自己的计算方法。
(2)展示汇报。(可能出现第4页中几种不同的方法)
(3)对比这几种方法:有什么相同的地方?
引导学生发现,无论是转化成整数,拆分整数与小数分别除,还是竖式的方法,都有一个 共同的地方,就是小数的末尾可以添“0”继续除,在具体的情境中可以解释为,18元里有6 个3元,9?里有6个1角,剩余的3角可以换算成30分,30分里有6个5分,合在一起就 是3.15元。
4、应用方法,归纳总结。
竖式计算26÷4
(1)引导学生发现,整数除以整数有余数时,可以在被除数个位后点小数点,添“0”继续除,商的小数点一定要与被除数的小数点对齐。
(2)尝试总结除数是整数的小数除法的计算方法。
三、巩固练习。
1、买16个玩具恐龙花了12元,平均每个玩具恐龙多少元?
2、错题诊所。
209÷5=418 10÷25 =4 1.26÷18=0.7
3、先估算下面各题的商哪些大于1,哪些小于1,再竖式计算。
32÷8 12÷25 2.45÷3
4、一只蜜蜂的飞行速度是蝴蝶的2倍,如果蜜蜂每小时飞行11千米,蝴蝶每小时能飞行多少千米?
四、课堂总结
本节课你有哪些收获?
以上内容就是差异网为您提供的9篇《五年级数学教案》,您可以复制其中的精彩段落、语句,也可以下载doc格式的文档以便编辑使用。
鱼的数学教案篇6
教学目标:
1.掌握含有两级数的读法,能正确地读出亿以内的多位数。
2.掌握含有两级数的写法,能正确地写出亿以内的多位数。
3.通过具体的教学情境,加深学生对大数的感受,进一步发展学生的数感。
教学重点:含有两级数的写法和读法。
教学难点:
亿以内中间和末尾有0的数的读法。
教学准备:课件
教学过程:
一、谈话引入
课件出示以下题目:
1.说说下面各数是由多少个万组成的。
4250000 3040000 10500000
2.写一写。
三千零二十四万 四百万 六十五万
3.读一读。
30050000 5060000 170000
师:上节课,我们学习的都是整万的多位数,今天我们将一起来学习含有两级的多位数。(板书课题)
二、交流共享
1.课件出示教材第12页例题2第一幅算盘图。
(1)认识含有两级的数。
提问:算盘图上拨出的这个数是几位数?含有哪几级?每个数位上的数各是多少?
学生交流后得出:算盘图上拨出的这个数是八位数;含有两级,分别是个级和万级;个位上是9,十位上是3,百位上是2,千位上是5,万位上是9,十万位上是3,百万位上是2,千万位上是5。
追问:个级的计数单位是什么?万级的计数单位是什么?这个数由几个万和几个一组成?
先让学生独立思考,然后同桌交流,最后组织全班汇报。
得出结论:个级的计数单位是“一”,万级的计数单位是“万”,这个数由5239个万和5239个一组成。
再问:万级上的“5239”和个级上的“5239”有什么区别?
引导学生交流得出:虽然数字相同,但表示的意义不同:万级上的“5239”表示5239个万,个级上的“5239”表示5239个一。
(2)学习含有两级数的写法。
让学生根据算盘中每个数位上的珠子进行写数。
展示学生写出的数,并组织交流,说说自己是怎么想的。
交流写含有两级数的方法。
引导学生通过交流得出:写含有两级的.数时,先写万级上的数,再写各级上的数。
(3)学习含有两级数的读法。
先让学生分别读出“52390000”和“5239”这两个数。
讨论:万级上的数和个级上的数在读法上有什么相同点和不同点?
师生交流后,反馈:
相同点:“5239”不论在个级还是在万级都读作五千二百三十九。
不同点:万级上的数表示多少个“万”,读数时要添上“万”字,而个级上的数表示多少个“一”,读数时就不读这个“一”。
小结:我们在读含有两级的数时,先读万级上的数,再读个级上的数,万级上的数按照个级的数的读法来读,再在后面添上一个“万”字。
2.课件出示教材第12页例题2下面两幅算盘图。
(1)观察思考。
提问:观察这两幅算盘图中拨出的珠子,它们和第一幅图有什么不同?
引导学生通过观察发现:这两幅图中,有些数位上没有珠子,也就是一个数都没有。
(2)小组交流。
让学生说说算盘中各数是由多少个万和多少个一组成的。
(3)写一写。
提问:有些数位上一个数都没有,该怎么写?
(4)读一读。
提问:6004000和3080007这两个数中都有许多0,我们读数的时候,这些0都应该怎么读?
3.小结含有两级数的写法和读法。
写法:先写万级的数,再写个级的数,哪个数位上一个数也没有,就在那个数位上写0。
读法:先读万级,再读个级;万级的数,要按照个级数的读法来读,再在后面加上一个“万”字;每级末尾的0都不读,其他数位有一个0或连续几个0,都只读一个“零”。
三、反馈完善
1.完成教材第12页“练一练”。
指导学生先说出下面各数是由多少个万和多少个一组成的,再写一写、读一读。
2.课件出示下列题目。
(1)读一读。
①20xx年中国科技馆接待观众1900803人次。
②地球赤道周长约为40075700米。
③永乐大钟上铸了230184个汉字,是世界上汉字最多的大钟。
学生试读后,让学生说说这些数分别是怎样读的。
(2)写出下列横线上的数。
①我国的领土面积约九百六十万平方千米。
②中国国家图书馆累计藏书约二千一百六十万零九百册。
学生独立写数,并组织汇报。
四、反思总结
通过本课的学习,你有什么收获? 还有哪些疑问?
鱼的数学教案篇7
一、学生起点分析
学生已经了勾股定理,并在先前其他内容学习中已经积累了一定百度一下的逆向思维、逆向研究的经验,如:已知两直线平行,有什么样的结论?
反之,满足什么条件的两直线是平行?因而,本课时由勾股定理出发逆向思考获得逆命题,学生应该已经具备这样的意识,但具体研究中
可能要用到反证等思路,对现阶段学生而言可能还具有一定困难,需要教师适时的引导。
二、学习任务分析
本节课是北师大版数学八年级(上)第一章《勾股定理》第2节。教学任务有:探索勾股定理的逆定理
并利用该定理根据边长判断一个三角形是否是直角三角形,利用该定理解决一些简单的实际问题;通过具体的数,增加对勾股数的直观体验。为此确定教学目标:
● 知识与技能目标
1.理解勾股定理逆定理的具体内容及勾股数的概念;
2.能根据所给三角形三边的条件判断三角形是否是直角三角形。
● 过程与方法目标
1.经历一般规律的探索过程,发展学生的抽象思维能力;
2.经历从实验到验证的过程,发展学生的数学归纳能力。
● 情感与态度目标
1.体验生活中的数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣;
2.在探索过程中体验成功的喜悦,树立学习的自信心。
教学重点
理解勾股定理逆定理的具体内容。
三、教法学法
1.教学方法:实验猜想归纳论证
本节课的教学对象是初二学生,他们的参与意识较强,思维活跃,对通过实验获得数学结论已有一定的体验
但数学思维严谨的同学总是心存疑虑,利用逻辑推理的方式,让同学心服口服显得非常迫切,为了实现本节课的教学目标,我力求从以下三个方面对学生进行引导:
(1)从创设问题情景入手,通过知识再现,孕育教学过程;
(2)从学生活动出发,通过以旧引新,顺势教学过程;
(3)利用探索,研究手段,通过思维深入,领悟教学过程。
2.课前准备
教具:教材、电脑、多媒体课件。
学具:教材、笔记本、课堂练习本、文具。
四、教学过程设计
本节课设计了七个环节。第一环节:情境引入;第二环节:合作探究;第三环节:小试牛刀;第四环节:
登高望远;第五环节:巩固提高;第六环节:交流小结;第七环节:布置作业。
第一环节:情境引入
内容:
情境:1.直角三角形中,三边长度之间满足什么样的关系?
2.如果一个三角形中有两边的平方和等于第三边的平方,那么这个三角形是否就是直角三角形呢?
意图:
通过情境的创设引入新课,激发学生探究热情。
效果:
从勾股定理逆向思维这一情景引入,提出问题,激发了学生的求知欲,为下一环节奠定了良好的基础。
第二环节:合作探究
内容1:探究
下面有三组数,分别是一个三角形的三边长 ,①5,12,13;②7,24,25;③8,15,17;并回答这样两个问题:
1.这三组数都满足 吗?
2.分别以每组数为三边作出三角形,用量角器量一量,它们都是直角三角形吗?学生分为4人活动小组,每个小组可以任选其中的一组数。
意图:
通过学生的合作探究,得出若一个三角形的三边长 ,满足 ,则这个三角形是直角三角形这一结论;在活动中体验出数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由特殊一般特殊的发展规律。
效果:
经过学生充分讨论后,汇总各小组实验结果发现:①5,12,13满足 ,可以构成直角三角形;②7,24,25满足 ,可以构成直角三角形;③8,15,17满足 ,可以构成直角三角形。
从上面的分组实验很容易得出如下结论:
如果一个三角形的三边长 ,满足 ,那么这个三角形是直角三角形
内容2:说理
提问:有同学认为测量结果可能有误差,不同意这个发现。你认为这个发现正确吗?你能给出一个更有说服力的理由吗?
意图:让学生明确,仅仅基于测量结果得到的结论未必可靠,需要进一步通过说理等方式使学生确信结论的可靠性,同时明晰结论:
如果一个三角形的三边长 ,满足 ,那么这个三角形是直角三角形
满足 的三个正整数,称为勾股数。
注意事项:为了让学生确认该结论,需要进行说理,有条件的班级,还可利用几何画板动画演示,让同学有一个直观的认识。
活动3:反思总结
提问:
1.同学们还能找出哪些勾股数呢?
2.今天的结论与前面学习勾股定理有哪些异同呢?
3.到今天为止,你能用哪些方法判断一个三角形是直角三角形呢?
4.通过今天同学们合作探究,你能体验出一个数学结论的发现要经历哪些过程呢?
意图:进一步让学生认识该定理与勾股定理之间的关系
第三环节:小试牛刀
内容:
1.下列哪几组数据能作为直角三角形的三边长?请说明理由。
①9,12,15; ②15,36,39; ③12,35,36; ④12,18,22
解答:①②
2.一个三角形的三边长分别是 ,则这个三角形的面积是( )
a 250 b 150 c 200 d 不能确定
解答:b
3.如图1:在 中, 于 , ,则 是( )
a 等腰三角形 b 锐角三角形
c 直角三角形 d 钝角三角形
解答:c
4.将直角三角形的三边扩大相同的倍数后, (图1)
得到的三角形是( )
a 直角三角形 b 锐角三角形
c 钝角三角形 d 不能确定
解答:a
意图:
通过练习,加强对勾股定理及勾股定理逆定理认识及应用
效果
每题都要求学生独立完成(5分钟),并指出各题分别用了哪些知识。
第四环节:登高望远
内容:
1.一个零件的形状如图2所示,按规定这个零件中 都应是直角。工人师傅量得这个零件各边尺寸如图3所示,这个零件符合要求吗?
解答:符合要求 , 又 ,
2.一艘在海上朝正北方向航行的轮船,航行240海里时方位仪坏了,凭经验,船长指挥船左传90,继续航行70海里,则距出发地250海里,你能判断船转弯后,是否沿正西方向航行?
解答:由题意画出相应的图形
ab=240海里,bc=70海里,,ac=250海里;在△abc中
=(250+240)(250-240)
=4900= = 即 △abc是rt△
答:船转弯后,是沿正西方向航行的。
意图:
利用勾股定理逆定理解决实际问题,进一步巩固该定理。
效果:
学生能用自己的语言表达清楚解决问题的过程即可;利用三角形三边数量关系 判断一个三角形是直角三角形时,当遇见数据较大时,要懂得将 作适当变形( ),以便于计算。
第五环节:巩固提高
内容:
1.如图4,在正方形abcd中,ab=4,ae=2,df=1, 图中有几个直角三角形,你是如何判断的?与你的同伴交流。
解答:4个直角三角形,它们分别是△abe、△def、△bcf、△bef
2.如图5,哪些是直角三角形,哪些不是,说说你的理由?
图4 图5
解答:④⑤是直角三角形,①②③⑥不是直角三角形
意图:
第一题考查学生充分利用所学知识解决问题时,考虑问题要全面,不要漏解;第二题在于考查学生如何利用网格进行计算,从而解决问题。
效果:
学生在对所学知识有一定的熟悉度后,能够快速做答并能简要说明理由即可。注意防漏解及网格的应用。
第六环节:交流小结
内容:
师生相互交流总结出:
1.今天所学内容①会利用三角形三边数量关系 判断一个三角形是直角三角形;②满足 的三个正整数,称为勾股数;
2.从今天所学内容及所作练习中总结出的经验与方法:①数学是源于生活又服务于生活的;②数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由特殊一般特殊的发展规律;③利用三角形三边数量关系 判断一个三角形是直角三角形时,当遇见数据较大时,要懂得将 作适当变形, 便于计算。
意图:
鼓励学生结合本节课的学习谈自己的收获和感想,体会到勾股定理及其逆定理的广泛应用及它们的悠久历史;敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识。
效果:
学生畅所欲言自己的切身感受与实际收获,总结出利用三角形三边数量关系 判断一个三角形是直角三角形从古至今在实际生活中的广泛应用。
第七环节:布置作业
课本习题1.4第1,2,4题。
五、教学反思:
1.充分尊重教材,以勾股定理的逆向思维模式引入如果一个三角形的三边长 ,满足 ,是否能得到这个三角形是直角三角形的问题;充分引用教材中出现的例题和练习。
2.注重引导学生积极参与实验活动,从中体验任何一个数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由特殊一般特殊的发展规律。
3.在利用今天所学知识解决实际问题时,引导学生善于对公式变形,便于简便计算。
4.注重对学习新知理解应用偏困难的学生的进一步关注。
5.对于勾股定理的逆定理的论证可根据学生的实际情况做适当调整,不做要求。
由于本班学生整体水平较高,因而本设计教学容量相对较大,教学中,应注意根据自己班级学生的状况进行适当的删减或调整。
附:板书设计
能得到直角三角形吗
情景引入 小试牛刀: 登高望远